Pair correlations and $U$-statistics for independent and weakly dependent random variables
نویسندگان
چکیده
منابع مشابه
Pair Correlations and U-statistics for Independent and Weakly Dependent Random Variables
We prove a Glivenko-Cantelli type strong law of large numbers for the pair correlation of independent random variables. Except for a few powers of logarithms the results obtained are sharp. Similar estimates hold for the pair correlation of lacunary sequences {nkω} mod 1.
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملOn the Asymptotic Independent Representations for Sums of Some Weakly Dependent Random Variables
Let, for each n ∈ N, (Xi,n)05i5n be a triangular array of stationary, centered, square integrable and associated real valued random variables satisfying the weakly dependence condition lim N→N0 lim sup n→+∞ n n X r=N Cov (X0,n, Xr,n) = 0; where N0 is either infinite or the first positive integer N for which the limit of the sum n Pn r=N Cov (X0,n, Xr,n) vanishes as n goes to infinity. The purpo...
متن کاملStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2001
ISSN: 0019-2082
DOI: 10.1215/ijm/1258138356